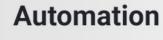


EP Engineering GmbH

Prüfstände & Messtechnik

Engineering & Consulting


Kalibrierung & Service

Automotive

Luftfahrt

Gebäude- & Energietechnik (HVAC-R)

Hausgeräte

Sensorindustrie

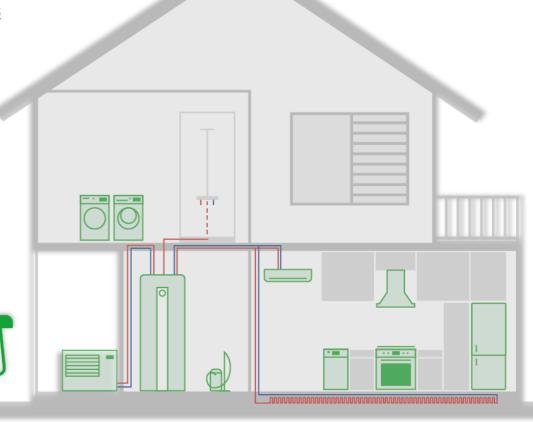
Kalibrierlaboratorien

Öl- & Gasindustrie

Filtertechnik

Fluid- & Ventiltechnik

Pharma & Medizin


Chemie

Prüfstände und Messsysteme in der Gebäudetechnik, HVAC-R

- Prüfstände für Ventilatoren, Heiz- und Lüftungsgeräte
- Prüfstände für Sensorik und Messgeräte der Gebäudetechnik
- Leckagemessung, Druck- und Temperaturwechseltests
- Wasserstoff | H₂ Kompetenzen
 - Übersicht der H₂-Projekte
 - GM16 Referenzgaszähler

Prüfstände und Messsysteme in der Gebäudetechnik, HVAC-R

Zurück zur Gesamtübersicht

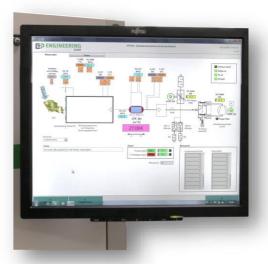
click

- Prüfstände für Ventilatoren, Heiz- und Lüftungsgeräte
- Prüfstände für Sensorik und Messgeräte der Gebäudetechnik
- Leckagemessung, Druck- und Temperaturwechseltests
- Wasserstoff | H₂ Kompetenzen
 - Übersicht der H₂-Projekte
 - GM16 Referenzgaszähler

Prüfstände für Ventilatoren, Heiz- und Lüftungsgeräte

Zurück zur Übersicht

- BTB Lüfter- & Ventilatorenprüfstände
- Akustikprüfstand
- HPT Wärmepumpenprüfstand
- Spülluftprüfstand
- Mehr-Klimakammer-Prüfstand
- Gasheizthermenprüfstand
- <u>Luftkonditionierung für Prüfstände | Closed-Loop Design</u>



Zurück zur Übersicht

- Vermessung und Kennlinienaufnahme von Lüftern und Ventilatoren nach DIN EN ISO 5801 and AMCA 201
- ✓ Volumenstrombereiche von 1,5 bis 100.000 m³/h
- ✓ Variation des Kammerdrucks je nach Auslegung zwischen ± 2500 Pa
- ✓ Hohe Messgenauigkeit bis 1% MW (Optional 0,5% MW)
- Kundenspezifische Auswahl der optimalen Messelemente

Broschüre EPE-161457

HVAC & Akustikprüfstand

Zurück zur Übersicht

- ✓ Prüfung und Kennlinienermittlung von HVAC-Modulen, z.B. in Verbindung mit einer Akustikkammer
- ✓ Höchste Genauigkeit bis ±0,5%
- ✓ Prüfung nach DIN EN ISO 5801
- ✓ Akustikregulierung < 25dB (A)</p>
- ✓ Durchflussmesstechnik mit Laminar Flow Elementen (LFEs)

Technische Beispieldaten	
Differenzdruck	-1250 1250 pa
Volumenstrom	1 1000 m³/h
Messgenauigkeit	±0,5% MW
Temperatur	RT
Schallpegel Prüfluft	< 25dB (A)
Spannung (optional)	0 400 V
Strom (optional)	0 70 A

HPT – Wärmepumpenprüfstand

Zurück zur Übersicht

- ✓ Leistungsprüfung von Wärmepumpen
- Closed-Loop Design für beste Uniformität und dynamische Temperatur- und Feuchtigkeitsregelung
- ✓ Leistungsprüfung gemäß DIN EN 14511
- ✓ Optimiertes Sicherheitskonzept (ATEX Zone 2): Für sichere Tests mit Kältemitteln mit niedrigem GWP
- Option Heizungswasser- und Brauchwasserkonditionierung: Simulation eines kompletten realistischen Versuchsaufbaus
- ✓ Option Mehrkammerprüfstände: Zur getrennten Simulation verschiedener Räume (Außen-, Technik- und Wohnraum)

Technische Spezifikation: Messkammer	
Temperatur	- 25 +50 °C

Relative Feuchtigkeit 10 ... 92 % r.H.

Feuchtkugeltemperatur - 8 ... +48 °C

Durchfluss Luft 1000 ... 4000 m³/h

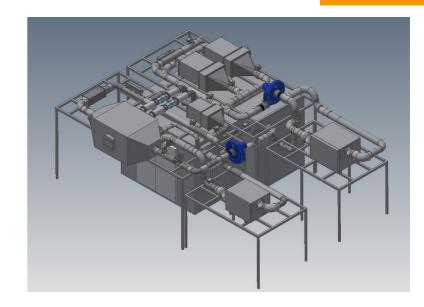
Broschüre EPE-162444

Spülluftprüfstand

Zurück zur Übersicht

- ✓ Prüfung von dezentralen, alternierenden Lüftungsgeräten nach DIN EN 13141-8
- ✓ Bestimmung von thermischen Leistungskennzahlen von alternierenden Lüftungsgeräten: Wärme- und Feuchterückgewinnung, Luftvolumenstrom und Balance im alternierenden Betrieb
- Optimierte Feuchte-, CO2- und Temperaturkonditionierung der Spülluft: Hohe Messgenauigkeit
- ✓ Variable Volumenströme: Für unterschiedliche Prüflinge und zusätzliche Prüfpunkte außerhalb der Norm

Technische Spezifikation	
Luftvolumenstrom Spülluft	20 200 m³/h (± 1,0 % EW)
Temperatur Spülluft	7 21 °C
Feuchtigkeit Spülluft	10 92 % r.H.
Messgenauigkeit Volumenstrom	± 1 % MW


Broschüre EPE-167449

Mehr-Klimakammer-Prüfstand

Zurück zur Übersicht

Technische Spezifikation	
Temperatur	- 25 +50 °C
Relative Feuchtigkeit	10 92 % r.H.
Durchfluss Luft	1000 4000 m³/h

- Umweltsimulation zur Prüfung von Lüftungsgeräten
 - Zentrale Lüftungsgeräte mit Wärmerückgewinnung (Ab- + Zuluft)
 - dezentrale Lüftungsgeräte mit und ohne Wärmerückgewinnung (Ab- + Zuluft, nur Abluft oder nur Zuluft)
 - Kombigeräte von Wärmepumpe + Lüftung + Speicher (z.B. Abluft- oder Fortluftwärmepumpe)
 - Wärmepumpen mit Außeneinheit
- Closed-Loop Design für beste Uniformität und dynamische Temperatur- und Feuchtigkeitsregelung

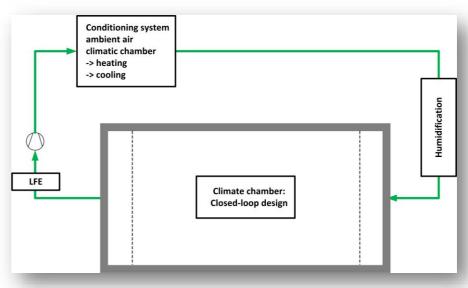
Gasheizthermenprüfstand

Zurück zur Übersicht

- ✓ Dauerlaufprüfung von Gasthermen
- ✓ Überprüfung der Wärmeüberträger bei verschiedenen Lastzuständen und Temperaturwechsel (Schockprüfung)
- ✓ Simulation der Heizwasserkreise

Technische Spezifikation, Beispieldaten	
Leistungsbereich	2 45 kW
Temperatur Heizkreis	0 120°C
Druck Erdgas	0 60 hPa
Druck Heizkreis	0 6000 hPa
Messgenauigkeit	0,5% EW

Luftkonditionierung | Closed-Loop design


- ✓ Basis-Prüfmodul zur Temperierung & Feuchteregelung
- ✓ Klimakammer & messtechnische Komponenten
- ✓ Simulation von Umgebungsbedingungen
- ✓ Variable Volumenstrom-, Temperatur-, Feuchte- und Druckbereiche

Messprinzip

Zurück zur Übersicht

Vereinfachtes Schema: Klimakammer

Technische Spezifikation

Applikationsbeispiel Vermessung von Dunstabzugshauben Normraum & Versuchsküche, zugluftfreier Raum

Volumenstrom	20 1000 m³/h
Temperatur	0 55°C
Rel. Feuchte	0 100 % rH
Absolutdruck	800 1200 mbar

Prüfstände und Messsysteme in der Gebäudetechnik, HVAC-R

Zurück zur Gesamtübersicht

click

- Prüfstände für Ventilatoren, Heiz- und Lüftungsgeräte
- Prüfstände für Sensorik und Messgeräte der Gebäudetechnik
- Leckagemessung, Druck- und Temperaturwechseltests
- Wasserstoff | H₂ Kompetenzen
 - Übersicht der H₂-Projekte
 - GM16 Referenzgaszähler

Prüfstände für Sensorik und Messgeräte der Gebäudetechnik

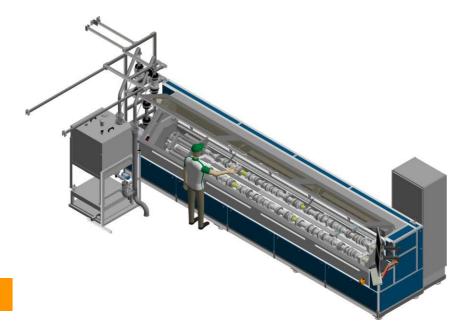
Zurück zur Übersicht

- Abgleichanlage für Kleinstmengensensoren
- Prüfstand für Wärmemengenzähler
- Prüfstand für Haushaltsgaszähler

Zurück zur Übersicht

- Regeln und Steuern von Umgebungsbedingungen zur Prüfung von Raumluftsensoren
- ✓ Kleine und große Strömungsgeschwindigkeiten
- Trotz kleiner Strömungsgeschwindigkeiten genaue Luftströme eingestellt

Technische Spezifikation	
Strömungsgeschwindigkeit in der klimatisierten Kammer	<0,1 0,3 m/s
CO2-Gehalt in der klimatisierten Kammer	400 2000 ppm
Feuchte in der klimatisierten Kammer	5 80 % rh
Temperatur in der klimatisierten Kammer	10 40 °C
Turbulenzgrad	Laminare Strömung



Wärmemengenzähler-Prüfstand

Zurück zur Übersicht

- ✓ Abgleich und Eichung von Wärmezählern
- ✓ Hohe Präzision der Durchflussgenerierung und der Volumenbestimmung
- ✓ Flexible Steuerung von Durchflussprofilen
- ✓ Prüflingsschnittstelle:
 - NOWA V2
 - abwärtskompatibel zu NOWA V1.5

Technische Spezifikation	
Volumenstrom	5 20.000 l/h
Medium	Wasser
Wassertemperatur	7 85 °C

Zurück zur Übersicht

 Der Prüfstand ist speziell für die Kalibrierung von Haushaltsgaszählern (e. g. Balgengaszähler, Ultraschallzähler) konzipiert

> Prüfstand Typ A: G1,6 bis G10 Prüfstand Typ B: G10 bis G65 Prüfstand Typ C: G65 bis G400

- ✓ Höchste Genauigkeit durch den Einsatz kritischer Düsen
- ✓ Modularer Systemaufbau für 1 bis 24 Prüflinge

Technische Spezifikation	
Prüfmedium	Luft
Messunsicherheit der Düsen	0,25% MW
Messunsicherheit Gesamtsystem	0,30% MW (Optional 0,20% mit PTB-Kalibrierung)

Prüfstände und Messsysteme in der Gebäudetechnik, HVAC-R

Zurück zur Gesamtübersicht

Prüfstände für Ventilatoren, Heiz- und Lüftungsgeräte

- Prüfstände für Sensorik und Messgeräte der Gebäudetechnik
- Leckagemessung, Druck- und Temperaturwechseltests
- Wasserstoff | H₂ Kompetenzen
 - Übersicht der H₂-Projekte
 - GM16 Referenzgaszähler

Leckagemessung, Druck- und Temperaturwechseltests

Zurück zur Übersicht

- Hochdruckprüfstand für Kühlgeräte Leckagemessung
- <u>Druck- und Temperaturwechselprüfstände für Gebäudetechnik</u>
- Prüfstände für Haushaltsgeräte

Hochdruckprüfstand für Kühlgeräte – Leckagemessung

Zurück zur Übersicht

- ✓ Prüfung von Kältelufterzeuger auf Dichtheit
- ✓ Beständigkeitsprüfung (Proof Pressure Test): Bei diesem Test wird die Beständigkeit des Kältekreislaufs bei Überdruck geprüft. Als Prüfgas wird Stickstoff verwendet.
- Druckschalterprüfung (Pressure Switch Test): Bei der Druckschalterprüfung wird die ordnungsgemäße Funktionalität des im Kältekreislauf befindlichen Druckschalters geprüft.

Technische Spezifikation, Beispieldaten	
Prüfdruck	0 100 bar
Umgebungsdruck	800 1200 mbar
Umgebungstemperatur	050 °C
Umgebungsfeuchte	0100 % rH

Druck- und Temperaturwechselprüfstände für Gebäudetechnik

Zurück zur Übersicht

- ✓ Funktions- und Leckageprüfstände für bspw. Anbohr- und Absperrarmaturen, Kunststoffverbundrohre, Ventile oder andere Komponenten
- ✓ Medium: Druckluft, (Leitungs-)Wasser
- ✓ Betrieb mit unterschiedlichen Wasserdrücken
- ✓ Manuell- oder Automatikbetrieb mit Datenaufzeichnung

Druckwechselprüfstand Anbohrarmaturen

Wasserdruck	0,5 29 bar
Drehmoment	9 150 Nm

Leckageprüfstand für Ventilgehäuse

Prüfdruck	0 400 bar
Messgenauigkeit	±0,1% EW

Infos auf Anfrage

✓ Beispiel 1: Komponentenprüfung von Waschmaschinen

Prüfung von Zulaufschläuchen mit/ohne Ventil, Ventilen, Zuflussschläuche, Einlassschläuchen, Ablaufschläuchen, Abflussschläuche

Prüfungen wie bspw.: Dichtheitsprüfung, Druckfestigkeitsprüfung, Berstprüfung, Impulsdruckfestigkeitsprüfung, Druckstoßprüfung, Temperaturwechselprüfung

Technische Spezifikation	
Druck	0,1 120 bar
Volumenstrom	0,3 11 l/min
Temperatur	15 90°C

Beispiel 2: Prüfung von Dunstabzugshauben, Lüfterprüfstand

Volumenstrommessungen bis 1500 m³/h bei einem Prüfdruck bis -2500 Pa im saugenden Betrieb. Im drückenden Betrieb sind 600 m³/h bei einem Prüflingsdruckverlust von 400 Pa möglich (Filtertests).

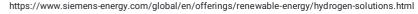
Technische Spezifikation	
Volumenstrom	30 1500 m³/h
Temperatur	0 50°C
Feuchte	0 100 % rH
Umgebungsdruck	800 1200 mbar

Infos auf Anfrage

Prüfstände und Messsysteme in der Gebäudetechnik, HVAC-R

Zurück zur Gesamtübersicht

- Prüfstände für Ventilatoren, Heiz- und Lüftungsgeräte
- Prüfstände für Sensorik und Messgeräte der Gebäudetechnik
- Leckagemessung, Druck- und Temperaturwechseltests
- Wasserstoff | H₂ Kompetenzen
 - Übersicht der H₂-Projekte
 - GM16 Referenzgaszähler



Gaszähler GM16 als Referenzstandard für H₂-Kalibrierung oder H₂-Messung

- Durchflussmessgerät für div. Gase
- Kalibrierung von Durchflussmessern für div. Gase
- Rückführbarkeit auf nationale Standards
- ✓ Hohe Messgenauigkeit 0,5 % MW + 0,005 % EW
- Hochpräzise, kontinuierlich und absolut pulsationsfrei

Gaszähler GM16 als Referenzstandard für H₂-Kalibrierung oder H₂-Messung

Zurück zur Übersicht

- ✓ Der Goldstandard für Kleinstmengenmessungen
- ✓ Referenzmessung von kleinen Durchflüssen: Bis 0,01 m³/h - auch für Wasserstoff geeignet
- ✓ Kontinuierlich und absolut pulsationsfrei: Durch speziell geformte Kolben
- Medium: Luft, Stickstoff, Erdgas, Helium, Wasserstoff, andere nicht brennbare und nicht aggressive Gase

Applikationen:

- Industrielle Anwendungen
- Kalibrier- & Transfernormale
- Messgeräte für Prüfstände
- Durchflussmessung von Wasserstoff, z.B. zur Verbrauchsmessung an Brennstoffzellen
- Durchflussmessung des Wasserstoffausstoßes von Elektrolyseuren
- Kalibrierung von Haushaltsgaszählern G1,6-G10

Technische Spezifikation	
Qmin Qmax	0,01 16 m³/h
Messbereich	> 1:1000
Pulswertigkeit	GM16, 1HF: 77.000 imp/m ³ GM16, 2HF: 153.000 imp/m ³
Betriebsdruck	bis zu 6 bar Überdruck

 Integration of the gas meter into a test bench

 Gas meter with measuring box and display via Android app

 Mobile measuring box with integrated gas meter for use on site

Broschüre EPE-183530

EP Engineering

Wir sind Spezialisten für hochpräzise Durchflussmesstechnik.

Zurück zur Gesamtübersicht

Mehr als 3500 realisierte Projekte -

für Kunden aus den Bereichen Automotive, Luftfahrt, Gas- und Strömungsmessung, HLK-Technik, etc.

- Hohe Anwendungskompetenz in der Luftkonditionierung (T, rh, p) z.B. Prüfung von Ladeluftkühlern für Automobilkunden
- ➤ Kompetenz in Prüfständen für den Ex-Bereich z.B. Dauerlaufprüfstände für Gas-Warmwasserbereiter bis 1000 kW; HPPP High Pressure Piston Prover
- Hochpräzise Durchflussmessung eigenes DAkkS-Kalibrierlabor für Luftstrom / Primärnormale für nationale metrologische Institute (PTB Deutschland, NIM China, INM Kolumbien, etc.)

EP Ehrler Prüftechnik Engineering GmbH Wilhelm-Hachtel-Str. 8, 97996 Niederstetten

Fon: +49 7932 60666 0 info@ep-e.com

Fax: +49 7932 60666 11 www.ep-e.com

